跳转至

添加与管理记忆

AI 应用需要 memory 来在多次交互之间共享上下文。在 LangGraph 中,你可以添加两种类型的记忆:

添加短期记忆

**短期**记忆(线程级 persistence)让智能体能够跟踪多轮对话。添加短期记忆的方法如下:

API Reference: InMemorySaver | StateGraph

from langgraph.checkpoint.memory import InMemorySaver
from langgraph.graph import StateGraph

checkpointer = InMemorySaver()

builder = StateGraph(...)
graph = builder.compile(checkpointer=checkpointer)

graph.invoke(
    {"messages": [{"role": "user", "content": "hi! i am Bob"}]},
    {"configurable": {"thread_id": "1"}},
)

生产环境中的用法

在生产环境中,请使用由数据库支持的 checkpointer:

API Reference: PostgresSaver

from langgraph.checkpoint.postgres import PostgresSaver

DB_URI = "postgresql://postgres:postgres@localhost:5442/postgres?sslmode=disable"
with PostgresSaver.from_conn_string(DB_URI) as checkpointer:
    builder = StateGraph(...)
    graph = builder.compile(checkpointer=checkpointer)
示例:使用 Postgres checkpointer
pip install -U "psycopg[binary,pool]" langgraph langgraph-checkpoint-postgres

Setup

第一次使用 Postgres checkpointer 时,需要调用 checkpointer.setup()

from langchain.chat_models import init_chat_model
from langgraph.graph import StateGraph, MessagesState, START
from langgraph.checkpoint.postgres import PostgresSaver

model = init_chat_model(model="anthropic:claude-3-5-haiku-latest")

DB_URI = "postgresql://postgres:postgres@localhost:5442/postgres?sslmode=disable"
with PostgresSaver.from_conn_string(DB_URI) as checkpointer:
    # checkpointer.setup()

    def call_model(state: MessagesState):
        response = model.invoke(state["messages"])
        return {"messages": response}

    builder = StateGraph(MessagesState)
    builder.add_node(call_model)
    builder.add_edge(START, "call_model")

    graph = builder.compile(checkpointer=checkpointer)

    config = {
        "configurable": {
            "thread_id": "1"
        }
    }

    for chunk in graph.stream(
        {"messages": [{"role": "user", "content": "hi! I'm bob"}]},
        config,
        stream_mode="values"
    ):
        chunk["messages"][-1].pretty_print()

    for chunk in graph.stream(
        {"messages": [{"role": "user", "content": "what's my name?"}]},
        config,
        stream_mode="values"
    ):
        chunk["messages"][-1].pretty_print()
from langchain.chat_models import init_chat_model
from langgraph.graph import StateGraph, MessagesState, START
from langgraph.checkpoint.postgres.aio import AsyncPostgresSaver

model = init_chat_model(model="anthropic:claude-3-5-haiku-latest")

DB_URI = "postgresql://postgres:postgres@localhost:5442/postgres?sslmode=disable"
async with AsyncPostgresSaver.from_conn_string(DB_URI) as checkpointer:
    # await checkpointer.setup()

    async def call_model(state: MessagesState):
        response = await model.ainvoke(state["messages"])
        return {"messages": response}

    builder = StateGraph(MessagesState)
    builder.add_node(call_model)
    builder.add_edge(START, "call_model")

    graph = builder.compile(checkpointer=checkpointer)

    config = {
        "configurable": {
            "thread_id": "1"
        }
    }

    async for chunk in graph.astream(
        {"messages": [{"role": "user", "content": "hi! I'm bob"}]},
        config,
        stream_mode="values"
    ):
        chunk["messages"][-1].pretty_print()

    async for chunk in graph.astream(
        {"messages": [{"role": "user", "content": "what's my name?"}]},
        config,
        stream_mode="values"
    ):
        chunk["messages"][-1].pretty_print()
示例:使用 MongoDB checkpointer
pip install -U pymongo langgraph langgraph-checkpoint-mongodb

Setup

若要使用 MongoDB checkpointer,你需要一个 MongoDB 集群。如果你还没有,请按照本指南创建一个集群。

from langchain.chat_models import init_chat_model
from langgraph.graph import StateGraph, MessagesState, START
from langgraph.checkpoint.mongodb import MongoDBSaver

model = init_chat_model(model="anthropic:claude-3-5-haiku-latest")

DB_URI = "localhost:27017"
with MongoDBSaver.from_conn_string(DB_URI) as checkpointer:

    def call_model(state: MessagesState):
        response = model.invoke(state["messages"])
        return {"messages": response}

    builder = StateGraph(MessagesState)
    builder.add_node(call_model)
    builder.add_edge(START, "call_model")

    graph = builder.compile(checkpointer=checkpointer)

    config = {
        "configurable": {
            "thread_id": "1"
        }
    }

    for chunk in graph.stream(
        {"messages": [{"role": "user", "content": "hi! I'm bob"}]},
        config,
        stream_mode="values"
    ):
        chunk["messages"][-1].pretty_print()

    for chunk in graph.stream(
        {"messages": [{"role": "user", "content": "what's my name?"}]},
        config,
        stream_mode="values"
    ):
        chunk["messages"][-1].pretty_print()
from langchain.chat_models import init_chat_model
from langgraph.graph import StateGraph, MessagesState, START
from langgraph.checkpoint.mongodb.aio import AsyncMongoDBSaver

model = init_chat_model(model="anthropic:claude-3-5-haiku-latest")

DB_URI = "localhost:27017"
async with AsyncMongoDBSaver.from_conn_string(DB_URI) as checkpointer:

    async def call_model(state: MessagesState):
        response = await model.ainvoke(state["messages"])
        return {"messages": response}

    builder = StateGraph(MessagesState)
    builder.add_node(call_model)
    builder.add_edge(START, "call_model")

    graph = builder.compile(checkpointer=checkpointer)

    config = {
        "configurable": {
            "thread_id": "1"
        }
    }

    async for chunk in graph.astream(
        {"messages": [{"role": "user", "content": "hi! I'm bob"}]},
        config,
        stream_mode="values"
    ):
        chunk["messages"][-1].pretty_print()

    async for chunk in graph.astream(
        {"messages": [{"role": "user", "content": "what's my name?"}]},
        config,
        stream_mode="values"
    ):
        chunk["messages"][-1].pretty_print()
示例:使用 Redis checkpointer
pip install -U langgraph langgraph-checkpoint-redis

Setup

第一次使用 Redis checkpointer 时,需要调用 checkpointer.setup()

from langchain.chat_models import init_chat_model
from langgraph.graph import StateGraph, MessagesState, START
from langgraph.checkpoint.redis import RedisSaver

model = init_chat_model(model="anthropic:claude-3-5-haiku-latest")

DB_URI = "redis://localhost:6379"
with RedisSaver.from_conn_string(DB_URI) as checkpointer:
    # checkpointer.setup()

    def call_model(state: MessagesState):
        response = model.invoke(state["messages"])
        return {"messages": response}

    builder = StateGraph(MessagesState)
    builder.add_node(call_model)
    builder.add_edge(START, "call_model")

    graph = builder.compile(checkpointer=checkpointer)

    config = {
        "configurable": {
            "thread_id": "1"
        }
    }

    for chunk in graph.stream(
        {"messages": [{"role": "user", "content": "hi! I'm bob"}]},
        config,
        stream_mode="values"
    ):
        chunk["messages"][-1].pretty_print()

    for chunk in graph.stream(
        {"messages": [{"role": "user", "content": "what's my name?"}]},
        config,
        stream_mode="values"
    ):
        chunk["messages"][-1].pretty_print()
from langchain.chat_models import init_chat_model
from langgraph.graph import StateGraph, MessagesState, START
from langgraph.checkpoint.redis.aio import AsyncRedisSaver

model = init_chat_model(model="anthropic:claude-3-5-haiku-latest")

DB_URI = "redis://localhost:6379"
async with AsyncRedisSaver.from_conn_string(DB_URI) as checkpointer:
    # await checkpointer.asetup()

    async def call_model(state: MessagesState):
        response = await model.ainvoke(state["messages"])
        return {"messages": response}

    builder = StateGraph(MessagesState)
    builder.add_node(call_model)
    builder.add_edge(START, "call_model")

    graph = builder.compile(checkpointer=checkpointer)

    config = {
        "configurable": {
            "thread_id": "1"
        }
    }

    async for chunk in graph.astream(
        {"messages": [{"role": "user", "content": "hi! I'm bob"}]},
        config,
        stream_mode="values"
    ):
        chunk["messages"][-1].pretty_print()

    async for chunk in graph.astream(
        {"messages": [{"role": "user", "content": "what's my name?"}]},
        config,
        stream_mode="values"
    ):
        chunk["messages"][-1].pretty_print()

在子图中使用

如果你的图包含子图,只需在编译父图时提供 checkpointer。LangGraph 将自动把 checkpointer 传播到子子图。

API Reference: START | StateGraph | InMemorySaver

from langgraph.graph import START, StateGraph
from langgraph.checkpoint.memory import InMemorySaver
from typing import TypedDict

class State(TypedDict):
    foo: str

# Subgraph

def subgraph_node_1(state: State):
    return {"foo": state["foo"] + "bar"}

subgraph_builder = StateGraph(State)
subgraph_builder.add_node(subgraph_node_1)
subgraph_builder.add_edge(START, "subgraph_node_1")
subgraph = subgraph_builder.compile()

# Parent graph

builder = StateGraph(State)
builder.add_node("node_1", subgraph)
builder.add_edge(START, "node_1")

checkpointer = InMemorySaver()
graph = builder.compile(checkpointer=checkpointer)

如果你希望子图拥有自己的记忆,你可以在编译时为其传入适当的 checkpointer 选项。这在多智能体系统中很有用,若你希望每个智能体跟踪其内部消息历史。

subgraph_builder = StateGraph(...)
subgraph = subgraph_builder.compile(checkpointer=True)

在工具中读取短期记忆

LangGraph 允许智能体在工具内访问其短期记忆(state)。

API Reference: InjectedState | create_react_agent

from typing import Annotated
from langgraph.prebuilt import InjectedState, create_react_agent

class CustomState(AgentState):
    user_id: str

def get_user_info(
    state: Annotated[CustomState, InjectedState]
) -> str:
    """Look up user info."""
    user_id = state["user_id"]
    return "User is John Smith" if user_id == "user_123" else "Unknown user"

agent = create_react_agent(
    model="anthropic:claude-3-7-sonnet-latest",
    tools=[get_user_info],
    state_schema=CustomState,
)

agent.invoke({
    "messages": "look up user information",
    "user_id": "user_123"
})

更多信息请参阅上下文指南。

在工具中写入短期记忆

要在执行过程中修改智能体的短期记忆(state),你可以直接从工具返回状态更新。这对于持久化中间结果,或让后续工具或提示可以访问相关信息非常有用。

API Reference: InjectedToolCallId | RunnableConfig | ToolMessage | InjectedState | create_react_agent | AgentState | Command

from typing import Annotated
from langchain_core.tools import InjectedToolCallId
from langchain_core.runnables import RunnableConfig
from langchain_core.messages import ToolMessage
from langgraph.prebuilt import InjectedState, create_react_agent
from langgraph.prebuilt.chat_agent_executor import AgentState
from langgraph.types import Command

class CustomState(AgentState):
    user_name: str

def update_user_info(
    tool_call_id: Annotated[str, InjectedToolCallId],
    config: RunnableConfig
) -> Command:
    """Look up and update user info."""
    user_id = config["configurable"].get("user_id")
    name = "John Smith" if user_id == "user_123" else "Unknown user"
    return Command(update={
        "user_name": name,
        # update the message history
        "messages": [
            ToolMessage(
                "Successfully looked up user information",
                tool_call_id=tool_call_id
            )
        ]
    })

def greet(
    state: Annotated[CustomState, InjectedState]
) -> str:
    """Use this to greet the user once you found their info."""
    user_name = state["user_name"]
    return f"Hello {user_name}!"

agent = create_react_agent(
    model="anthropic:claude-3-7-sonnet-latest",
    tools=[update_user_info, greet],
    state_schema=CustomState
)

agent.invoke(
    {"messages": [{"role": "user", "content": "greet the user"}]},
    config={"configurable": {"user_id": "user_123"}}
)

添加长期记忆

使用长期记忆在多次对话之间存储用户特定或应用特定的数据。

API Reference: StateGraph

from langgraph.store.memory import InMemoryStore
from langgraph.graph import StateGraph

store = InMemoryStore()

builder = StateGraph(...)
graph = builder.compile(store=store)

生产环境中的用法

在生产环境中,请使用由数据库支持的 store:

from langgraph.store.postgres import PostgresStore

DB_URI = "postgresql://postgres:postgres@localhost:5442/postgres?sslmode=disable"
with PostgresStore.from_conn_string(DB_URI) as store:
    builder = StateGraph(...)
    graph = builder.compile(store=store)
示例:使用 Postgres store
pip install -U "psycopg[binary,pool]" langgraph langgraph-checkpoint-postgres

Setup

第一次使用 Postgres store 时,需要调用 store.setup()

from langchain_core.runnables import RunnableConfig
from langchain.chat_models import init_chat_model
from langgraph.graph import StateGraph, MessagesState, START
from langgraph.checkpoint.postgres import PostgresSaver
from langgraph.store.postgres import PostgresStore
from langgraph.store.base import BaseStore

model = init_chat_model(model="anthropic:claude-3-5-haiku-latest")

DB_URI = "postgresql://postgres:postgres@localhost:5442/postgres?sslmode=disable"

with (
    PostgresStore.from_conn_string(DB_URI) as store,
    PostgresSaver.from_conn_string(DB_URI) as checkpointer,
):
    # store.setup()
    # checkpointer.setup()

    def call_model(
        state: MessagesState,
        config: RunnableConfig,
        *,
        store: BaseStore,
    ):
        user_id = config["configurable"]["user_id"]
        namespace = ("memories", user_id)
        memories = store.search(namespace, query=str(state["messages"][-1].content))
        info = "\n".join([d.value["data"] for d in memories])
        system_msg = f"You are a helpful assistant talking to the user. User info: {info}"

        # Store new memories if the user asks the model to remember
        last_message = state["messages"][-1]
        if "remember" in last_message.content.lower():
            memory = "User name is Bob"
            store.put(namespace, str(uuid.uuid4()), {"data": memory})

        response = model.invoke(
            [{"role": "system", "content": system_msg}] + state["messages"]
        )
        return {"messages": response}

    builder = StateGraph(MessagesState)
    builder.add_node(call_model)
    builder.add_edge(START, "call_model")

    graph = builder.compile(
        checkpointer=checkpointer,
        store=store,
    )

    config = {
        "configurable": {
            "thread_id": "1",
            "user_id": "1",
        }
    }
    for chunk in graph.stream(
        {"messages": [{"role": "user", "content": "Hi! Remember: my name is Bob"}]},
        config,
        stream_mode="values",
    ):
        chunk["messages"][-1].pretty_print()

    config = {
        "configurable": {
            "thread_id": "2",
            "user_id": "1",
        }
    }

    for chunk in graph.stream(
        {"messages": [{"role": "user", "content": "what is my name?"}]},
        config,
        stream_mode="values",
    ):
        chunk["messages"][-1].pretty_print()
from langchain_core.runnables import RunnableConfig
from langchain.chat_models import init_chat_model
from langgraph.graph import StateGraph, MessagesState, START
from langgraph.checkpoint.postgres.aio import AsyncPostgresSaver
from langgraph.store.postgres.aio import AsyncPostgresStore
from langgraph.store.base import BaseStore

model = init_chat_model(model="anthropic:claude-3-5-haiku-latest")

DB_URI = "postgresql://postgres:postgres@localhost:5442/postgres?sslmode=disable"

async with (
    AsyncPostgresStore.from_conn_string(DB_URI) as store,
    AsyncPostgresSaver.from_conn_string(DB_URI) as checkpointer,
):
    # await store.setup()
    # await checkpointer.setup()

    async def call_model(
        state: MessagesState,
        config: RunnableConfig,
        *,
        store: BaseStore,
    ):
        user_id = config["configurable"]["user_id"]
        namespace = ("memories", user_id)
        memories = await store.asearch(namespace, query=str(state["messages"][-1].content))
        info = "\n".join([d.value["data"] for d in memories])
        system_msg = f"You are a helpful assistant talking to the user. User info: {info}"

        # Store new memories if the user asks the model to remember
        last_message = state["messages"][-1]
        if "remember" in last_message.content.lower():
            memory = "User name is Bob"
            await store.aput(namespace, str(uuid.uuid4()), {"data": memory})

        response = await model.ainvoke(
            [{"role": "system", "content": system_msg}] + state["messages"]
        )
        return {"messages": response}

    builder = StateGraph(MessagesState)
    builder.add_node(call_model)
    builder.add_edge(START, "call_model")

    graph = builder.compile(
        checkpointer=checkpointer,
        store=store,
    )

    config = {
        "configurable": {
            "thread_id": "1",
            "user_id": "1",
        }
    }
    async for chunk in graph.astream(
        {"messages": [{"role": "user", "content": "Hi! Remember: my name is Bob"}]},
        config,
        stream_mode="values",
    ):
        chunk["messages"][-1].pretty_print()

    config = {
        "configurable": {
            "thread_id": "2",
            "user_id": "1",
        }
    }

    async for chunk in graph.astream(
        {"messages": [{"role": "user", "content": "what is my name?"}]},
        config,
        stream_mode="values",
    ):
        chunk["messages"][-1].pretty_print()
示例:使用 Redis store
pip install -U langgraph langgraph-checkpoint-redis

Setup

第一次使用 Redis store 时,需要调用 store.setup()

from langchain_core.runnables import RunnableConfig
from langchain.chat_models import init_chat_model
from langgraph.graph import StateGraph, MessagesState, START
from langgraph.checkpoint.redis import RedisSaver
from langgraph.store.redis import RedisStore
from langgraph.store.base import BaseStore

model = init_chat_model(model="anthropic:claude-3-5-haiku-latest")

DB_URI = "redis://localhost:6379"

with (
    RedisStore.from_conn_string(DB_URI) as store,
    RedisSaver.from_conn_string(DB_URI) as checkpointer,
):
    store.setup()
    checkpointer.setup()

    def call_model(
        state: MessagesState,
        config: RunnableConfig,
        *,
        store: BaseStore,
    ):
        user_id = config["configurable"]["user_id"]
        namespace = ("memories", user_id)
        memories = store.search(namespace, query=str(state["messages"][-1].content))
        info = "\n".join([d.value["data"] for d in memories])
        system_msg = f"You are a helpful assistant talking to the user. User info: {info}"

        # Store new memories if the user asks the model to remember
        last_message = state["messages"][-1]
        if "remember" in last_message.content.lower():
            memory = "User name is Bob"
            store.put(namespace, str(uuid.uuid4()), {"data": memory})

        response = model.invoke(
            [{"role": "system", "content": system_msg}] + state["messages"]
        )
        return {"messages": response}

    builder = StateGraph(MessagesState)
    builder.add_node(call_model)
    builder.add_edge(START, "call_model")

    graph = builder.compile(
        checkpointer=checkpointer,
        store=store,
    )

    config = {
        "configurable": {
            "thread_id": "1",
            "user_id": "1",
        }
    }
    for chunk in graph.stream(
        {"messages": [{"role": "user", "content": "Hi! Remember: my name is Bob"}]},
        config,
        stream_mode="values",
    ):
        chunk["messages"][-1].pretty_print()

    config = {
        "configurable": {
            "thread_id": "2",
            "user_id": "1",
        }
    }

    for chunk in graph.stream(
        {"messages": [{"role": "user", "content": "what is my name?"}]},
        config,
        stream_mode="values",
    ):
        chunk["messages"][-1].pretty_print()
from langchain_core.runnables import RunnableConfig
from langchain.chat_models import init_chat_model
from langgraph.graph import StateGraph, MessagesState, START
from langgraph.checkpoint.redis.aio import AsyncRedisSaver
from langgraph.store.redis.aio import AsyncRedisStore
from langgraph.store.base import BaseStore

model = init_chat_model(model="anthropic:claude-3-5-haiku-latest")

DB_URI = "redis://localhost:6379"

async with (
    AsyncRedisStore.from_conn_string(DB_URI) as store,
    AsyncRedisSaver.from_conn_string(DB_URI) as checkpointer,
):
    # await store.setup()
    # await checkpointer.asetup()

    async def call_model(
        state: MessagesState,
        config: RunnableConfig,
        *,
        store: BaseStore,
    ):
        user_id = config["configurable"]["user_id"]
        namespace = ("memories", user_id)
        memories = await store.asearch(namespace, query=str(state["messages"][-1].content))
        info = "\n".join([d.value["data"] for d in memories])
        system_msg = f"You are a helpful assistant talking to the user. User info: {info}"

        # Store new memories if the user asks the model to remember
        last_message = state["messages"][-1]
        if "remember" in last_message.content.lower():
            memory = "User name is Bob"
            await store.aput(namespace, str(uuid.uuid4()), {"data": memory})

        response = await model.ainvoke(
            [{"role": "system", "content": system_msg}] + state["messages"]
        )
        return {"messages": response}

    builder = StateGraph(MessagesState)
    builder.add_node(call_model)
    builder.add_edge(START, "call_model")

    graph = builder.compile(
        checkpointer=checkpointer,
        store=store,
    )

    config = {
        "configurable": {
            "thread_id": "1",
            "user_id": "1",
        }
    }
    async for chunk in graph.astream(
        {"messages": [{"role": "user", "content": "Hi! Remember: my name is Bob"}]},
        config,
        stream_mode="values",
    ):
        chunk["messages"][-1].pretty_print()

    config = {
        "configurable": {
            "thread_id": "2",
            "user_id": "1",
        }
    }

    async for chunk in graph.astream(
        {"messages": [{"role": "user", "content": "what is my name?"}]},
        config,
        stream_mode="values",
    ):
        chunk["messages"][-1].pretty_print()

在工具中读取长期记忆

A tool the agent can use to look up user information
from langchain_core.runnables import RunnableConfig
from langgraph.config import get_store
from langgraph.prebuilt import create_react_agent
from langgraph.store.memory import InMemoryStore

store = InMemoryStore() # (1)!

store.put(  # (2)!
    ("users",),  # (3)!
    "user_123",  # (4)!
    {
        "name": "John Smith",
        "language": "English",
    } # (5)!
)

def get_user_info(config: RunnableConfig) -> str:
    """Look up user info."""
    # Same as that provided to `create_react_agent`
    store = get_store() # (6)!
    user_id = config["configurable"].get("user_id")
    user_info = store.get(("users",), user_id) # (7)!
    return str(user_info.value) if user_info else "Unknown user"

agent = create_react_agent(
    model="anthropic:claude-3-7-sonnet-latest",
    tools=[get_user_info],
    store=store # (8)!
)

# Run the agent
agent.invoke(
    {"messages": [{"role": "user", "content": "look up user information"}]},
    config={"configurable": {"user_id": "user_123"}}
)
  1. InMemoryStore 是一个将数据存储在内存中的存储。在生产环境中,你通常会使用数据库或其他持久化存储。更多选项请查看store 文档。如果你部署在 LangGraph Platform,平台会为你提供生产级的 store。
  2. 在本例中,我们使用 put 方法向 store 写入一些示例数据。更多细节请参阅 BaseStore.put API 参考。
  3. 第一个参数是命名空间,用于将相关数据归组。在这个例子中,我们使用 users 命名空间来归组用户数据。
  4. 命名空间内的一个键。本例使用用户 ID 作为键。
  5. 我们希望为该用户存储的数据。
  6. get_store 函数用于访问 store。你可以在代码的任何位置(包括工具和提示)调用它。该函数返回创建智能体时传入的 store。
  7. get 方法用于从 store 读取数据。第一个参数是命名空间,第二个参数是键。函数返回一个 StoreValue 对象,包含值及其相关的元数据。
  8. 通过将 store 传给智能体,使其在运行工具时能够访问 store。你也可以在代码任何位置通过 get_store 访问该 store。

在工具中写入长期记忆

Example of a tool that updates user information
from typing_extensions import TypedDict

from langgraph.config import get_store
from langchain_core.runnables import RunnableConfig
from langgraph.prebuilt import create_react_agent
from langgraph.store.memory import InMemoryStore

store = InMemoryStore() # (1)!

class UserInfo(TypedDict): # (2)!
    name: str

def save_user_info(user_info: UserInfo, config: RunnableConfig) -> str: # (3)!
    """Save user info."""
    # Same as that provided to `create_react_agent`
    store = get_store() # (4)!
    user_id = config["configurable"].get("user_id")
    store.put(("users",), user_id, user_info) # (5)!
    return "Successfully saved user info."

agent = create_react_agent(
    model="anthropic:claude-3-7-sonnet-latest",
    tools=[save_user_info],
    store=store
)

# Run the agent
agent.invoke(
    {"messages": [{"role": "user", "content": "My name is John Smith"}]},
    config={"configurable": {"user_id": "user_123"}} # (6)!
)

# You can access the store directly to get the value
store.get(("users",), "user_123").value
  1. InMemoryStore 是一个将数据存储在内存中的存储。在生产环境中,你通常会使用数据库或其他持久化存储。更多选项请查看store 文档。如果你部署在 LangGraph Platform,平台会为你提供生产级的 store。
  2. UserInfo 类是一个 TypedDict,用于定义用户信息的结构。LLM 将使用该结构来根据 schema 格式化响应。
  3. save_user_info 函数是一个工具,允许智能体更新用户信息。这对于用户希望更新个人资料信息的聊天应用很有用。
  4. get_store 函数用于访问 store。你可以在代码的任何位置(包括工具和提示)调用它。该函数返回创建智能体时传入的 store。
  5. put 方法用于向 store 写入数据。第一个参数是命名空间,第二个参数是键。该调用会将用户信息存入 store。
  6. user_id 通过 config 传入,用于标识正在更新信息的用户。

使用语义搜索

在图的内存存储中启用语义搜索,让图中的智能体可以通过语义相似度来检索 store 中的条目。

API Reference: init_embeddings

from langchain.embeddings import init_embeddings
from langgraph.store.memory import InMemoryStore

# Create store with semantic search enabled
embeddings = init_embeddings("openai:text-embedding-3-small")
store = InMemoryStore(
    index={
        "embed": embeddings,
        "dims": 1536,
    }
)

store.put(("user_123", "memories"), "1", {"text": "I love pizza"})
store.put(("user_123", "memories"), "2", {"text": "I am a plumber"})

items = store.search(
    ("user_123", "memories"), query="I'm hungry", limit=1
)
带语义搜索的长期记忆
from typing import Optional

from langchain.embeddings import init_embeddings
from langchain.chat_models import init_chat_model
from langgraph.store.base import BaseStore
from langgraph.store.memory import InMemoryStore
from langgraph.graph import START, MessagesState, StateGraph

llm = init_chat_model("openai:gpt-4o-mini")

# Create store with semantic search enabled
embeddings = init_embeddings("openai:text-embedding-3-small")
store = InMemoryStore(
    index={
        "embed": embeddings,
        "dims": 1536,
    }
)

store.put(("user_123", "memories"), "1", {"text": "I love pizza"})
store.put(("user_123", "memories"), "2", {"text": "I am a plumber"})

def chat(state, *, store: BaseStore):
    # Search based on user's last message
    items = store.search(
        ("user_123", "memories"), query=state["messages"][-1].content, limit=2
    )
    memories = "\n".join(item.value["text"] for item in items)
    memories = f"## Memories of user\n{memories}" if memories else ""
    response = llm.invoke(
        [
            {"role": "system", "content": f"You are a helpful assistant.\n{memories}"},
            *state["messages"],
        ]
    )
    return {"messages": [response]}


builder = StateGraph(MessagesState)
builder.add_node(chat)
builder.add_edge(START, "chat")
graph = builder.compile(store=store)

for message, metadata in graph.stream(
    input={"messages": [{"role": "user", "content": "I'm hungry"}]},
    stream_mode="messages",
):
    print(message.content, end="")

更多关于在 LangGraph memory store 中使用语义搜索的信息,请参阅此指南

管理短期记忆

启用短期记忆后,较长的对话可能会超出 LLM 的上下文窗口。常见的解决方案包括:

  • 裁剪消息:移除最前或最后 N 条消息(在调用 LLM 之前)
  • 从 LangGraph state 中删除消息(永久)
  • 总结消息:对较早的历史消息进行总结,并用摘要替换
  • 管理检查点,以存储与检索消息历史
  • 自定义策略(例如消息过滤等)

这些方法可以帮助智能体在不超过 LLM 上下文窗口的情况下追踪对话。

裁剪消息

大多数 LLM 都有最大上下文窗口(以 tokens 计)。一种决定何时截断消息的方式是统计消息历史中的 token 数,并在接近该限制时进行截断。如果你使用 LangChain,你可以使用 trim messages 工具,指定要从列表中保留的 token 数,以及用于处理边界的 strategy(例如保留最近的 maxTokens)。

要在智能体中裁剪消息历史,使用 pre_model_hook 搭配 trim_messages 函数:

from langchain_core.messages.utils import (
    trim_messages,
    count_tokens_approximately
)
from langgraph.prebuilt import create_react_agent

# This function will be called every time before the node that calls LLM
def pre_model_hook(state):
    trimmed_messages = trim_messages(
        state["messages"],
        strategy="last",
        token_counter=count_tokens_approximately,
        max_tokens=384,
        start_on="human",
        end_on=("human", "tool"),
    )
    return {"llm_input_messages": trimmed_messages}

checkpointer = InMemorySaver()
agent = create_react_agent(
    model,
    tools,
    pre_model_hook=pre_model_hook,
    checkpointer=checkpointer,
)

要裁剪消息历史,使用 trim_messages 函数:

from langchain_core.messages.utils import (
    trim_messages,
    count_tokens_approximately
)

def call_model(state: MessagesState):
    messages = trim_messages(
        state["messages"],
        strategy="last",
        token_counter=count_tokens_approximately,
        max_tokens=128,
        start_on="human",
        end_on=("human", "tool"),
    )
    response = model.invoke(messages)
    return {"messages": [response]}

builder = StateGraph(MessagesState)
builder.add_node(call_model)
...
完整示例:裁剪消息
from langchain_core.messages.utils import (
    trim_messages,
    count_tokens_approximately
)
from langchain.chat_models import init_chat_model
from langgraph.graph import StateGraph, START, MessagesState

model = init_chat_model("anthropic:claude-3-7-sonnet-latest")
summarization_model = model.bind(max_tokens=128)

def call_model(state: MessagesState):
    messages = trim_messages(
        state["messages"],
        strategy="last",
        token_counter=count_tokens_approximately,
        max_tokens=128,
        start_on="human",
        end_on=("human", "tool"),
    )
    response = model.invoke(messages)
    return {"messages": [response]}

checkpointer = InMemorySaver()
builder = StateGraph(MessagesState)
builder.add_node(call_model)
builder.add_edge(START, "call_model")
graph = builder.compile(checkpointer=checkpointer)

config = {"configurable": {"thread_id": "1"}}
graph.invoke({"messages": "hi, my name is bob"}, config)
graph.invoke({"messages": "write a short poem about cats"}, config)
graph.invoke({"messages": "now do the same but for dogs"}, config)
final_response = graph.invoke({"messages": "what's my name?"}, config)

final_response["messages"][-1].pretty_print()
================================== Ai Message ==================================

Your name is Bob, as you mentioned when you first introduced yourself.

删除消息

你可以从图的 state 中删除消息以管理消息历史。当你想要移除特定消息或清空整个消息历史时,这很有用。

要从图的 state 中删除消息,可以使用 RemoveMessage。要让 RemoveMessage 生效,你需要为 state 的某个键使用 add_messages reducer,例如 MessagesState

删除特定消息:

API Reference: RemoveMessage

from langchain_core.messages import RemoveMessage

def delete_messages(state):
    messages = state["messages"]
    if len(messages) > 2:
        # remove the earliest two messages
        return {"messages": [RemoveMessage(id=m.id) for m in messages[:2]]}

删除**所有**消息:

from langgraph.graph.message import REMOVE_ALL_MESSAGES

def delete_messages(state):
    return {"messages": [RemoveMessage(id=REMOVE_ALL_MESSAGES)]}

Warning

删除消息时,务必确保最终的消息历史是有效的。请检查所用 LLM 提供商的限制。例如:

  • 有些提供商要求消息历史以 user 消息开始
  • 大多数提供商要求带有工具调用的 assistant 消息后必须有相应的 tool 结果消息
完整示例:删除消息
from langchain_core.messages import RemoveMessage

def delete_messages(state):
    messages = state["messages"]
    if len(messages) > 2:
        # remove the earliest two messages
        return {"messages": [RemoveMessage(id=m.id) for m in messages[:2]]}

def call_model(state: MessagesState):
    response = model.invoke(state["messages"])
    return {"messages": response}

builder = StateGraph(MessagesState)
builder.add_sequence([call_model, delete_messages])
builder.add_edge(START, "call_model")

checkpointer = InMemorySaver()
app = builder.compile(checkpointer=checkpointer)

for event in app.stream(
    {"messages": [{"role": "user", "content": "hi! I'm bob"}]},
    config,
    stream_mode="values"
):
    print([(message.type, message.content) for message in event["messages"]])

for event in app.stream(
    {"messages": [{"role": "user", "content": "what's my name?"}]},
    config,
    stream_mode="values"
):
    print([(message.type, message.content) for message in event["messages"]])
[('human', "hi! I'm bob")]
[('human', "hi! I'm bob"), ('ai', 'Hi Bob! How are you doing today? Is there anything I can help you with?')]
[('human', "hi! I'm bob"), ('ai', 'Hi Bob! How are you doing today? Is there anything I can help you with?'), ('human', "what's my name?")]
[('human', "hi! I'm bob"), ('ai', 'Hi Bob! How are you doing today? Is there anything I can help you with?'), ('human', "what's my name?"), ('ai', 'Your name is Bob.')]
[('human', "what's my name?"), ('ai', 'Your name is Bob.')]

总结消息

如上所示,裁剪或移除消息的问题在于可能导致信息丢失。因此,一些应用更适合使用更复杂的方法,即使用聊天模型对消息历史进行总结。

要在智能体中总结消息历史,使用 pre_model_hook 搭配预构建的 SummarizationNode 抽象:

from langchain_anthropic import ChatAnthropic
from langmem.short_term import SummarizationNode, RunningSummary
from langchain_core.messages.utils import count_tokens_approximately
from langgraph.prebuilt import create_react_agent
from langgraph.prebuilt.chat_agent_executor import AgentState
from langgraph.checkpoint.memory import InMemorySaver
from typing import Any

model = ChatAnthropic(model="claude-3-7-sonnet-latest")

summarization_node = SummarizationNode( # (1)!
    token_counter=count_tokens_approximately,
    model=model,
    max_tokens=384,
    max_summary_tokens=128,
    output_messages_key="llm_input_messages",
)

class State(AgentState):
    # NOTE: we're adding this key to keep track of previous summary information
    # to make sure we're not summarizing on every LLM call
    context: dict[str, RunningSummary]  # (2)!


checkpointer = InMemorySaver() # (3)!

agent = create_react_agent(
    model=model,
    tools=tools,
    pre_model_hook=summarization_node, # (4)!
    state_schema=State, # (5)!
    checkpointer=checkpointer,
)
  1. InMemorySaver 是一个将智能体状态存储在内存中的 checkpointer。在生产环境中,你通常会使用数据库或其他持久化存储。更多选项请查看checkpointer 文档。如果你部署在 LangGraph Platform,平台会为你提供生产级的 checkpointer。
  2. 在智能体 state 中添加 context 键。该键包含总结节点的簿记信息,用于跟踪最近一次总结信息,避免每次调用 LLM 都进行总结(低效)。
  3. checkpointer 传给智能体,使其能在多次调用之间持久化 state。
  4. pre_model_hook 设置为 SummarizationNode。该节点会在将消息发送给 LLM 之前,对消息历史进行总结,并自动更新智能体 state。你也可以替换为自定义实现。更多细节参阅 create_react_agent API 参考。
  5. state_schema 设置为包含额外 context 键的自定义 State

可以使用提示词与编排逻辑对消息历史进行总结。例如,在 LangGraph 中,你可以扩展 MessagesState,添加一个 summary 键:

from langgraph.graph import MessagesState
class State(MessagesState):
    summary: str

然后,你可以生成聊天历史摘要,并将已有的摘要作为下一次摘要的上下文。可以在 messages 状态键累积到足够数量后调用这个 summarize_conversation 节点。

def summarize_conversation(state: State):

    # First, we get any existing summary
    summary = state.get("summary", "")

    # Create our summarization prompt
    if summary:

        # A summary already exists
        summary_message = (
            f"This is a summary of the conversation to date: {summary}\n\n"
            "Extend the summary by taking into account the new messages above:"
        )

    else:
        summary_message = "Create a summary of the conversation above:"

    # Add prompt to our history
    messages = state["messages"] + [HumanMessage(content=summary_message)]
    response = model.invoke(messages)

    # Delete all but the 2 most recent messages
    delete_messages = [RemoveMessage(id=m.id) for m in state["messages"][:-2]]
    return {"summary": response.content, "messages": delete_messages}
完整示例:总结消息
from typing import Any, TypedDict

from langchain.chat_models import init_chat_model
from langchain_core.messages import AnyMessage
from langchain_core.messages.utils import count_tokens_approximately
from langgraph.graph import StateGraph, START, MessagesState
from langgraph.checkpoint.memory import InMemorySaver
from langmem.short_term import SummarizationNode, RunningSummary

model = init_chat_model("anthropic:claude-3-7-sonnet-latest")
summarization_model = model.bind(max_tokens=128)

class State(MessagesState):
    context: dict[str, RunningSummary]  # (1)!

class LLMInputState(TypedDict):  # (2)!
    summarized_messages: list[AnyMessage]
    context: dict[str, RunningSummary]

summarization_node = SummarizationNode(
    token_counter=count_tokens_approximately,
    model=summarization_model,
    max_tokens=256,
    max_tokens_before_summary=256,
    max_summary_tokens=128,
)

def call_model(state: LLMInputState):  # (3)!
    response = model.invoke(state["summarized_messages"])
    return {"messages": [response]}

checkpointer = InMemorySaver()
builder = StateGraph(State)
builder.add_node(call_model)
builder.add_node("summarize", summarization_node)
builder.add_edge(START, "summarize")
builder.add_edge("summarize", "call_model")
graph = builder.compile(checkpointer=checkpointer)

# Invoke the graph
config = {"configurable": {"thread_id": "1"}}
graph.invoke({"messages": "hi, my name is bob"}, config)
graph.invoke({"messages": "write a short poem about cats"}, config)
graph.invoke({"messages": "now do the same but for dogs"}, config)
final_response = graph.invoke({"messages": "what's my name?"}, config)

final_response["messages"][-1].pretty_print()
print("\nSummary:", final_response["context"]["running_summary"].summary)
  1. 我们将在 context 字段中维护运行中的摘要(SummarizationNode 期望该字段存在)。
  2. 定义仅用于过滤 call_model 节点输入的私有 state。
  3. 这里传入一个私有输入 state,以隔离由总结节点返回的消息。
================================== Ai Message ==================================

From our conversation, I can see that you introduced yourself as Bob. That's the name you shared with me when we began talking.

Summary: In this conversation, I was introduced to Bob, who then asked me to write a poem about cats. I composed a poem titled "The Mystery of Cats" that captured cats' graceful movements, independent nature, and their special relationship with humans. Bob then requested a similar poem about dogs, so I wrote "The Joy of Dogs," which highlighted dogs' loyalty, enthusiasm, and loving companionship. Both poems were written in a similar style but emphasized the distinct characteristics that make each pet special.

管理检查点

你可以查看并删除由 checkpointer 存储的信息。

查看线程状态(checkpoint)

config = {
    "configurable": {
        "thread_id": "1",
        # optionally provide an ID for a specific checkpoint,
        # otherwise the latest checkpoint is shown
        # "checkpoint_id": "1f029ca3-1f5b-6704-8004-820c16b69a5a"

    }
}
graph.get_state(config)
StateSnapshot(
    values={'messages': [HumanMessage(content="hi! I'm bob"), AIMessage(content='Hi Bob! How are you doing today?), HumanMessage(content="what's my name?"), AIMessage(content='Your name is Bob.')]}, next=(),
    config={'configurable': {'thread_id': '1', 'checkpoint_ns': '', 'checkpoint_id': '1f029ca3-1f5b-6704-8004-820c16b69a5a'}},
    metadata={
        'source': 'loop',
        'writes': {'call_model': {'messages': AIMessage(content='Your name is Bob.')}},
        'step': 4,
        'parents': {},
        'thread_id': '1'
    },
    created_at='2025-05-05T16:01:24.680462+00:00',
    parent_config={'configurable': {'thread_id': '1', 'checkpoint_ns': '', 'checkpoint_id': '1f029ca3-1790-6b0a-8003-baf965b6a38f'}},
    tasks=(),
    interrupts=()
)
config = {
    "configurable": {
        "thread_id": "1",
        # optionally provide an ID for a specific checkpoint,
        # otherwise the latest checkpoint is shown
        # "checkpoint_id": "1f029ca3-1f5b-6704-8004-820c16b69a5a"

    }
}
checkpointer.get_tuple(config)
CheckpointTuple(
    config={'configurable': {'thread_id': '1', 'checkpoint_ns': '', 'checkpoint_id': '1f029ca3-1f5b-6704-8004-820c16b69a5a'}},
    checkpoint={
        'v': 3,
        'ts': '2025-05-05T16:01:24.680462+00:00',
        'id': '1f029ca3-1f5b-6704-8004-820c16b69a5a',
        'channel_versions': {'__start__': '00000000000000000000000000000005.0.5290678567601859', 'messages': '00000000000000000000000000000006.0.3205149138784782', 'branch:to:call_model': '00000000000000000000000000000006.0.14611156755133758'}, 'versions_seen': {'__input__': {}, '__start__': {'__start__': '00000000000000000000000000000004.0.5736472536395331'}, 'call_model': {'branch:to:call_model': '00000000000000000000000000000005.0.1410174088651449'}},
        'channel_values': {'messages': [HumanMessage(content="hi! I'm bob"), AIMessage(content='Hi Bob! How are you doing today?), HumanMessage(content="what's my name?"), AIMessage(content='Your name is Bob.')]}
    },
    metadata={
        'source': 'loop',
        'writes': {'call_model': {'messages': AIMessage(content='Your name is Bob.')}},
        'step': 4,
        'parents': {},
        'thread_id': '1'
    },
    parent_config={'configurable': {'thread_id': '1', 'checkpoint_ns': '', 'checkpoint_id': '1f029ca3-1790-6b0a-8003-baf965b6a38f'}},
    pending_writes=[]
)

查看线程历史(checkpoints)

config = {
    "configurable": {
        "thread_id": "1"
    }
}
list(graph.get_state_history(config))
[
    StateSnapshot(
        values={'messages': [HumanMessage(content="hi! I'm bob"), AIMessage(content='Hi Bob! How are you doing today? Is there anything I can help you with?'), HumanMessage(content="what's my name?"), AIMessage(content='Your name is Bob.')]},
        next=(),
        config={'configurable': {'thread_id': '1', 'checkpoint_ns': '', 'checkpoint_id': '1f029ca3-1f5b-6704-8004-820c16b69a5a'}},
        metadata={'source': 'loop', 'writes': {'call_model': {'messages': AIMessage(content='Your name is Bob.')}}, 'step': 4, 'parents': {}, 'thread_id': '1'},
        created_at='2025-05-05T16:01:24.680462+00:00',
        parent_config={'configurable': {'thread_id': '1', 'checkpoint_ns': '', 'checkpoint_id': '1f029ca3-1790-6b0a-8003-baf965b6a38f'}},
        tasks=(),
        interrupts=()
    ),
    StateSnapshot(
        values={'messages': [HumanMessage(content="hi! I'm bob"), AIMessage(content='Hi Bob! How are you doing today? Is there anything I can help you with?'), HumanMessage(content="what's my name?")]},
        next=('call_model',),
        config={'configurable': {'thread_id': '1', 'checkpoint_ns': '', 'checkpoint_id': '1f029ca3-1790-6b0a-8003-baf965b6a38f'}},
        metadata={'source': 'loop', 'writes': None, 'step': 3, 'parents': {}, 'thread_id': '1'},
        created_at='2025-05-05T16:01:23.863421+00:00',
        parent_config={...}
        tasks=(PregelTask(id='8ab4155e-6b15-b885-9ce5-bed69a2c305c', name='call_model', path=('__pregel_pull', 'call_model'), error=None, interrupts=(), state=None, result={'messages': AIMessage(content='Your name is Bob.')}),),
        interrupts=()
    ),
    StateSnapshot(
        values={'messages': [HumanMessage(content="hi! I'm bob"), AIMessage(content='Hi Bob! How are you doing today? Is there anything I can help you with?')]},
        next=('__start__',),
        config={...},
        metadata={'source': 'input', 'writes': {'__start__': {'messages': [{'role': 'user', 'content': "what's my name?"}]}}, 'step': 2, 'parents': {}, 'thread_id': '1'},
        created_at='2025-05-05T16:01:23.863173+00:00',
        parent_config={...}
        tasks=(PregelTask(id='24ba39d6-6db1-4c9b-f4c5-682aeaf38dcd', name='__start__', path=('__pregel_pull', '__start__'), error=None, interrupts=(), state=None, result={'messages': [{'role': 'user', 'content': "what's my name?"}]}),),
        interrupts=()
    ),
    StateSnapshot(
        values={'messages': [HumanMessage(content="hi! I'm bob"), AIMessage(content='Hi Bob! How are you doing today? Is there anything I can help you with?')]},
        next=(),
        config={...},
        metadata={'source': 'loop', 'writes': {'call_model': {'messages': AIMessage(content='Hi Bob! How are you doing today? Is there anything I can help you with?')}}, 'step': 1, 'parents': {}, 'thread_id': '1'},
        created_at='2025-05-05T16:01:23.862295+00:00',
        parent_config={...}
        tasks=(),
        interrupts=()
    ),
    StateSnapshot(
        values={'messages': [HumanMessage(content="hi! I'm bob")]},
        next=('call_model',),
        config={...},
        metadata={'source': 'loop', 'writes': None, 'step': 0, 'parents': {}, 'thread_id': '1'},
        created_at='2025-05-05T16:01:22.278960+00:00',
        parent_config={...}
        tasks=(PregelTask(id='8cbd75e0-3720-b056-04f7-71ac805140a0', name='call_model', path=('__pregel_pull', 'call_model'), error=None, interrupts=(), state=None, result={'messages': AIMessage(content='Hi Bob! How are you doing today? Is there anything I can help you with?')}),),
        interrupts=()
    ),
    StateSnapshot(
        values={'messages': []},
        next=('__start__',),
        config={'configurable': {'thread_id': '1', 'checkpoint_ns': '', 'checkpoint_id': '1f029ca3-0870-6ce2-bfff-1f3f14c3e565'}},
        metadata={'source': 'input', 'writes': {'__start__': {'messages': [{'role': 'user', 'content': "hi! I'm bob"}]}}, 'step': -1, 'parents': {}, 'thread_id': '1'},
        created_at='2025-05-05T16:01:22.277497+00:00',
        parent_config=None,
        tasks=(PregelTask(id='d458367b-8265-812c-18e2-33001d199ce6', name='__start__', path=('__pregel_pull', '__start__'), error=None, interrupts=(), state=None, result={'messages': [{'role': 'user', 'content': "hi! I'm bob"}]}),),
        interrupts=()
    )
]
config = {
    "configurable": {
        "thread_id": "1"
    }
}
list(checkpointer.list(config))
[
    CheckpointTuple(
        config={'configurable': {'thread_id': '1', 'checkpoint_ns': '', 'checkpoint_id': '1f029ca3-1f5b-6704-8004-820c16b69a5a'}},
        checkpoint={
            'v': 3,
            'ts': '2025-05-05T16:01:24.680462+00:00',
            'id': '1f029ca3-1f5b-6704-8004-820c16b69a5a',
            'channel_versions': {'__start__': '00000000000000000000000000000005.0.5290678567601859', 'messages': '00000000000000000000000000000006.0.3205149138784782', 'branch:to:call_model': '00000000000000000000000000000006.0.14611156755133758'},
            'versions_seen': {'__input__': {}, '__start__': {'__start__': '00000000000000000000000000000004.0.5736472536395331'}, 'call_model': {'branch:to:call_model': '00000000000000000000000000000005.0.1410174088651449'}},
            'channel_values': {'messages': [HumanMessage(content="hi! I'm bob"), AIMessage(content='Hi Bob! How are you doing today? Is there anything I can help you with?'), HumanMessage(content="what's my name?"), AIMessage(content='Your name is Bob.')]},
        },
        metadata={'source': 'loop', 'writes': {'call_model': {'messages': AIMessage(content='Your name is Bob.')}}, 'step': 4, 'parents': {}, 'thread_id': '1'},
        parent_config={...},
        pending_writes=[]
    ),
    CheckpointTuple(
        config={'configurable': {'thread_id': '1', 'checkpoint_ns': '', 'checkpoint_id': '1f029ca3-1790-6b0a-8003-baf965b6a38f'}},
        checkpoint={
            'v': 3,
            'ts': '2025-05-05T16:01:23.863421+00:00',
            'id': '1f029ca3-1790-6b0a-8003-baf965b6a38f',
            'channel_versions': {'__start__': '00000000000000000000000000000005.0.5290678567601859', 'messages': '00000000000000000000000000000006.0.3205149138784782', 'branch:to:call_model': '00000000000000000000000000000006.0.14611156755133758'},
            'versions_seen': {'__input__': {}, '__start__': {'__start__': '00000000000000000000000000000004.0.5736472536395331'}, 'call_model': {'branch:to:call_model': '00000000000000000000000000000005.0.1410174088651449'}},
            'channel_values': {'messages': [HumanMessage(content="hi! I'm bob"), AIMessage(content='Hi Bob! How are you doing today? Is there anything I can help you with?'), HumanMessage(content="what's my name?")], 'branch:to:call_model': None}
        },
        metadata={'source': 'loop', 'writes': None, 'step': 3, 'parents': {}, 'thread_id': '1'},
        parent_config={...},
        pending_writes=[('8ab4155e-6b15-b885-9ce5-bed69a2c305c', 'messages', AIMessage(content='Your name is Bob.'))]
    ),
    CheckpointTuple(
        config={...},
        checkpoint={
            'v': 3,
            'ts': '2025-05-05T16:01:23.863173+00:00',
            'id': '1f029ca3-1790-616e-8002-9e021694a0cd',
            'channel_versions': {'__start__': '00000000000000000000000000000004.0.5736472536395331', 'messages': '00000000000000000000000000000003.0.7056767754077798', 'branch:to:call_model': '00000000000000000000000000000003.0.22059023329132854'},
            'versions_seen': {'__input__': {}, '__start__': {'__start__': '00000000000000000000000000000001.0.7040775356287469'}, 'call_model': {'branch:to:call_model': '00000000000000000000000000000002.0.9300422176788571'}},
            'channel_values': {'__start__': {'messages': [{'role': 'user', 'content': "what's my name?"}]}, 'messages': [HumanMessage(content="hi! I'm bob"), AIMessage(content='Hi Bob! How are you doing today? Is there anything I can help you with?')]}
        },
        metadata={'source': 'input', 'writes': {'__start__': {'messages': [{'role': 'user', 'content': "what's my name?"}]}}, 'step': 2, 'parents': {}, 'thread_id': '1'},
        parent_config={...},
        pending_writes=[('24ba39d6-6db1-4c9b-f4c5-682aeaf38dcd', 'messages', [{'role': 'user', 'content': "what's my name?"}]), ('24ba39d6-6db1-4c9b-f4c5-682aeaf38dcd', 'branch:to:call_model', None)]
    ),
    CheckpointTuple(
        config={...},
        checkpoint={
            'v': 3,
            'ts': '2025-05-05T16:01:23.862295+00:00',
            'id': '1f029ca3-178d-6f54-8001-d7b180db0c89',
            'channel_versions': {'__start__': '00000000000000000000000000000002.0.18673090920108737', 'messages': '00000000000000000000000000000003.0.7056767754077798', 'branch:to:call_model': '00000000000000000000000000000003.0.22059023329132854'},
            'versions_seen': {'__input__': {}, '__start__': {'__start__': '00000000000000000000000000000001.0.7040775356287469'}, 'call_model': {'branch:to:call_model': '00000000000000000000000000000002.0.9300422176788571'}},
            'channel_values': {'messages': [HumanMessage(content="hi! I'm bob"), AIMessage(content='Hi Bob! How are you doing today? Is there anything I can help you with?')]}
        },
        metadata={'source': 'loop', 'writes': {'call_model': {'messages': AIMessage(content='Hi Bob! How are you doing today? Is there anything I can help you with?')}}, 'step': 1, 'parents': {}, 'thread_id': '1'},
        parent_config={...},
        pending_writes=[]
    ),
    CheckpointTuple(
        config={...},
        checkpoint={
            'v': 3,
            'ts': '2025-05-05T16:01:22.278960+00:00',
            'id': '1f029ca3-0874-6612-8000-339f2abc83b1',
            'channel_versions': {'__start__': '00000000000000000000000000000002.0.18673090920108737', 'messages': '00000000000000000000000000000002.0.30296526818059655', 'branch:to:call_model': '00000000000000000000000000000002.0.9300422176788571'},
            'versions_seen': {'__input__': {}, '__start__': {'__start__': '00000000000000000000000000000001.0.7040775356287469'}},
            'channel_values': {'messages': [HumanMessage(content="hi! I'm bob")], 'branch:to:call_model': None}
        },
        metadata={'source': 'loop', 'writes': None, 'step': 0, 'parents': {}, 'thread_id': '1'},
        parent_config={...},
        pending_writes=[('8cbd75e0-3720-b056-04f7-71ac805140a0', 'messages', AIMessage(content='Hi Bob! How are you doing today? Is there anything I can help you with?'))]
    ),
    CheckpointTuple(
        config={'configurable': {'thread_id': '1', 'checkpoint_ns': '', 'checkpoint_id': '1f029ca3-0870-6ce2-bfff-1f3f14c3e565'}},
        checkpoint={
            'v': 3,
            'ts': '2025-05-05T16:01:22.277497+00:00',
            'id': '1f029ca3-0870-6ce2-bfff-1f3f14c3e565',
            'channel_versions': {'__start__': '00000000000000000000000000000001.0.7040775356287469'},
            'versions_seen': {'__input__': {}},
            'channel_values': {'__start__': {'messages': [{'role': 'user', 'content': "hi! I'm bob"}]}}
        },
        metadata={'source': 'input', 'writes': {'__start__': {'messages': [{'role': 'user', 'content': "hi! I'm bob"}]}}, 'step': -1, 'parents': {}, 'thread_id': '1'},
        parent_config=None,
        pending_writes=[('d458367b-8265-812c-18e2-33001d199ce6', 'messages', [{'role': 'user', 'content': "hi! I'm bob"}]), ('d458367b-8265-812c-18e2-33001d199ce6', 'branch:to:call_model', None)]
    )
]

删除线程的所有检查点

thread_id = "1"
checkpointer.delete_thread(thread_id)

预构建的记忆工具

LangMem 是由 LangChain 维护的库,为你的智能体提供管理长期记忆的工具。使用示例请参阅 LangMem 文档